Predict a raster map based on a unsuperClass model fit.
Source:R/unsuperClass.R
predict.unsuperClass.Rd
applies a kmeans cluster model to all pixels of a raster. Useful if you want to apply a kmeans model of scene A to scene B.
Usage
# S3 method for class 'unsuperClass'
predict(object, img, output = "classes", ...)
Arguments
- object
unsuperClass object
- img
Raster object. Layernames must correspond to layernames used to train the superClass model, i.e. layernames in the original raster image.
- output
Character. Either 'classes' (kmeans class; default) or 'distances' (euclidean distance to each cluster center).
- ...
further arguments to be passed to writeRaster, e.g. filename
Examples
## Load training data
## Perform unsupervised classification
uc <- unsuperClass(rlogo, nClasses = 10)
## Apply the model to another raster
map <- predict(uc, rlogo)